Curiculum vitae

Name: De Feyter First Name: Steven

Institution: KU Leuven

Department of Chemistry

Division of Molecular Imaging and Photonics

Celestijnenlaan 200 F B-3001 Leuven (Belgium)

Function Full Professor at KU Leuven in the 'Division of Molecular Imaging

and Photonics', Department of Chemistry (since 2011).

Associate Editor of the RSC journal: Chemical Communications

(since 2010)

Career

11/2016-12/2016 Visiting professor Osaka University

08/2012-07/2016 Chair Department of Chemistry (KU Leuven)

10/2011-... Full professor (KU Leuven)

10/2008-09/2011 Professor (KU Leuven)

10/2004-09/2008 (Part-time) Associate Professor (KU Leuven)

10/1998-09/2007 Postdoctoral fellow Research Foundation – Flanders (FWO)

03/1998-06/1999 Postdoctoral research fellow and Fulbright fellow at the

California Institute of Technology (Caltech), Pasadena, in the

group of Prof. Ahmed Zewail

10/1993-09/1997 PhD student, financed by Research Foundation – Flanders

(FWO) in the group of Prof. Franc C. De Schryver (KU

Leuven).

Studies

1993-1997 Ph.D. in Chemistry at KU Leuven (promotor: Prof. Frans C. De

Schryver)

Topic: "Visualisation of ordering, chirality and reactivity on a

molecular scale with scanning tunneling microscopy".

1991-1993 Licentiate Chemical Sciences at the KU Leuven,

Summa cum laude

1989-1991 Candidate Chemical Sciences at KU Leuven,

Magna cum laude

Research

My research interests are nanochemistry and supramolecular chemistry on surfaces. Self-assembly on surfaces is a central theme of my research, with a focus on the relation between structure and function. Recent research activities cover a broad range of topics such as two-dimensional crystal engineering (e.g. formation of nanoporous surfaces, chirality at interfaces), templating, dynamics and reactivity. These studies aim at bringing insight in the fundamental aspects of molecule-substrate interactions and molecular organisation on surfaces, as well as the formation and use of these nanostructured functional surfaces (e.g. 2D materials). The liquid-solid interface is a preferred environment to induce self-assembly. Also biomolecular systems (DNA, proteins, their complexes, etc.) are investigated, with a focus on those that are involved in disease related processes. Scanning probe microscopy and spectroscopy techniques are particularly useful to probe the structural, dynamic, and electronic properties of these surface-confined molecular systems.

Awards and Grants

2018	Elected member of the "European Academy of Sciences"
2016	26th IOCF Yoshida Lectureship
2014	Elected member of the Royal Flemish Academy of Belgium for Science and the Arts: Natural Sciences
2013	European Research Council (ERC) Advanced Grant (NANOGRAPH@LSI)
2010	Laureate of The Royal Flemish Academy of Belgium for Science and the Arts: Natural Sciences
1997-1998	Fulbright fellow
1997	Laureate "DSM-prize of Chemistry and Technology 1997"